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Quadrature moments method for the simulation
of turbulent reactive flows

By Venkatramanan Raman, Heinz Pitsch and Rodney O. Fox †

1. Motivation and Objectives

In recent years, computational fluid mechanics has become one of the primary tools for
design and optimization of chemical reactors. With stringent environmental constraints,
close control of product selectivity and an estimate of by-products are essential in suc-
cessfully operating chemical plants. The fast throughput and enhanced mixing conditions
offered by turbulent flows are increasingly exploited in chemical reactors. Viable simula-
tion methods for such flows should be able to model the complex interaction of reaction
and turbulent flow. All known reaction models used in these simulations follow a segre-
gated approach where different techniques are used to solve the momentum and scalar
transport equations. It is assumed that reaction affects fluid flow only through the change
in density. Usually a variable density flow solver is utilized that accepts the density field
from the scalar handler to correct the flow field. The scalar transport scheme uses the flow
properties to evaluate the local density and this iterative procedure is used to advance
the solution in time. The Eulerian solution technique that is commonly used in solving
scalar transport equations inherently does not contain information about sub-grid level
processes. The adverse effect of neglecting sub-grid scalar fluctuations in cases where
the scalar evolves through non-linear rate expressions is well known. In combustion pro-
cesses which are characterized by fast chemistry, use of flamelet model (Pitsch & Steiner
2000) or conditional moment closure (CMC) (Bilger 1993) based on a conserved scalar
is known to be quite accurate in making qualitative as well as quantitative predictions.
Such a method obviates the need for solving multiple scalar transport equations and
is not restricted by the time-scale of individual reactions in the chemistry mechanism.
The flamelet model, like all other reaction models, requires the specification of a scalar
dissipation rate and assumes the shape of the PDF at the sub-grid level. The first-order
CMC method models the conditional mean of the reacting scalars as a function of mix-
ture fraction and local flow conditions. But the model ignores any fluctuations about the
conditional mean and may not be viable in slow chemistry regimes. Both the CMC and
flamelet model assume that all the reactive scalars can be parameterized by a single con-
served scalar. On the other end of the spectrum, the transported-PDF scheme computes
the sub-grid scalar-PDF in terms of a set of delta-functions. This method can be used
in tandem with a flow solver like those based on the Reynolds-Averaged Navier Stokes
(RANS) equation or Large-Eddy Simulation (LES) scheme to model reaction (Muradoglu
et al. 1999; Haworth & El Tahry 1991). Such a formulation computes the profiles of all
the species involved in the flow and leads to a closed form for the reaction source term.
However, a mixing model is needed to describe the sub-grid mixing process and has been
the focus of study in PDF methods (Subramaniam & Pope 1999; Valino 1995; Tsai & Fox
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1998). The fact that no convincing mixing model exists is one of the important drawbacks
of the method.
The transported-PDF still is an attractive scheme in that the reaction source term

appears closed. The inhomogeneous transport equation for the sub-grid PDF is multi-
dimensional and cannot be solved using Eulerian grid techniques. Particle based Monte-
Carlo schemes used with realistic chemistry show good agreement with experimental
results (Xu & Pope 2000; Masri & Pope 1990; Roekaerts 1991; Raman et al. 2003a).
However, the handling of a large number of Lagrangian particles along with detailed
chemistry can be computationally expensive. When using LES as the flow solver, such
schemes can be outright intractable in practical flow configurations. In this work, an
equivalent Eulerian version of the transported-PDF method is formulated for LES of
reactive flows.

2. Filtered Quadrature Scheme for Variable Density Flows

For use in LES of reactive flows, a filtered density function (FDF) is defined (Gao
& O’Brien 1993) that prescribes the sub-filter joint composition density function of the
scalars.

FL(ψ;x, t) =

∫ +∞

−∞

ρ(x′, t)δ[ψ − φ(x′, t)]G(x′ − x)dx′, (2.1)

where FL is the mass density function. This definition implies that in variable density
flows, the FDF is the mass weighted and spatially filtered fine-grain density (Jaberi et al.
1999).

∫ +∞

−∞

FL(ψ;x, t)dψ = ρ, (2.2)

where ρ is the filtered density. Using the scalar transport equation, the FDF is shown to
evolve in multi-dimensional space as:

∂FL
∂t
+
∂ [uiFL]

∂xi
=

∂

∂xi

[

(γ + γt)
∂ (FL/ρ)

∂xi

]

+
∂

∂ψα

[

Ωm
(

ψα − φα
)

FL
]

−
∂ [SαFL]

∂ψα
, (2.3)

where ui is the Favre filtered velocity component, ψ is the composition array and φ
is the Favre filtered mean composition array. The molecular and turbulent diffusivi-
ties are denoted by γ and γt respectively. The mixing frequency is modeled as Ωm =
CΩ (γ + γt) /

(

〈ρ〉l∆
2
G

)

, where ∆G is the filter width. This high- dimensional equation
is traditionally solved using Monte-Carlo schemes (Colucci et al. 1998; Raman et al.

2003b). As mentioned before, the particle based Monte-Carlo schemes are computation-
ally expensive for large grids and hence become intractable even for simple chemistry.
The Direct Quadrature Method of Moments (DQMOM) (Marchisio & Fox 2003; Wang
& Fox 2003) is introduced here in the context of LES to provide an alternate tractable
scheme.
Figure 1 shows the fine-grained PDF composed of a set of delta-functions approximat-

ing an arbitrary shaped PDF at a given point in the flow. Any particle based solution
to the FDF equation will yield such an approximation. The FDF plot can be considered
as a plot of normalized weights of particles in the computational cell. The accuracy of
the approximation depends, among other factors, on the number of approximating delta
functions. The Nα delta-functions are characterized by their positions (φαi) and their
heights (wαi). The FDF is considered solved if for a given number of delta functions, the
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Figure 1. Approximation of a PDF using a finite number of delta functions. (Left)
Transported PDF method and (Right) DQMOM method.

values of φαi and wαi are known. The DQMOM model formulates transport equations
for these quantities based on pre-determined number of so-called environments, where
each environment corresponds to a single delta-peak. The source terms involved in these
equations ensure that the DQMOM equations match the moment equations of the scalar.

In the multi-environment DQMOM model, the FDF is assumed to be of the form:

FL = ρ
N
∑

i=1

wiδ
(

ψ − φi
)

. (2.4)

The individual transport equations for the weights and locations of the delta-functions
can be derived by substituting Eq. 2.4 into Eq. 2.3 (Fox 2003). For a single scalar case,
this leads to

N
∑

i=1

δ
(

ψ − φi
)

[

∂ρwi
∂t

+∇ρuwi −∇ · (Γ + ΓT )∇wi

]

−

N
∑

i=1

δ(1)
(

ψ − φi
)

{

∂ρGi

∂t
+∇ρuGi −∇ · (Γ + ΓT )∇Gi

−φi

[

∂ρwi
∂t

+∇ρuwi −∇ · (Γ + ΓT )∇wi

]}

−

N
∑

i=1

δ(2)
(

ψ − φi
)

wi(Γ + ΓT )∇ · ∇φi = R(ψ;x, t), (2.5)

whereGi = wiφi andR(ψ;x, t) contains the mixing and reaction terms. δ
(m) indicates the

m-th derivative of the delta function. The properties of δ function are used in rewriting
the derivatives in terms of the filtered quantities (Pope 2000).

∂δ
(

ψ − φ
)

∂t
= −δ(1)

(

ψ − φ
) ∂φ

∂t
(2.6)



264 V. Raman, H. Pitsch & R. O. Fox

and

∂2δ
(

ψ − φ
)

∂x2j
= δ(2)

(

ψ − φ
) ∂2φ

∂x2j
. (2.7)

Following Fox (2003), Eq. 2.5 can be rewritten in terms of the transport equations for
wi and Gi, using ai and bi to denote the respective equations.

N
∑

i=1

[

δ
(

ψ − φ
)

+ φiδ
(1)
(

ψ − φ
)

]

ai −

N
∑

i=1

δ(1)
(

ψ − φ
)

bi

=

N
∑

i=1

δ(2)
(

ψ − φ
)

wici +R(ψ;x, t), (2.8)

where ci = (Γ + Γt)(∇φi)
2. In deriving these equations, the only assumption made so

far is that the shape of the PDF is approximated by a finite-set of delta functions. For
a N -environment model, 2N source terms need to be specified. It should be noted that
if the number of scalars is more than one, several cross moments can also be specified.
For details on the feasibility and choice of moments refer to Fox (2003) and Marchisio
& Fox (2003). Here, only the pure moments, namely the mean and variance of a scalar
are used in fixing the source terms. Multiplying Eq. 2.8 by ψm and integrating over the
composition space yields:

(1−m)

N
∑

i=1

φ
m

iai +m

N
∑

i=1

φ
m−1

ibi

= m(m− 1)

N
∑

i=1

φ
m−2

iwici +Rm. (2.9)

Similarly the reaction and mixing terms can be integrated to yield:

Rm =

∫ +∞

−∞

ψmR(ψ;x, t)

= −

∫ +∞

−∞

ψm
∂

∂ψ

{[

Ωm
(

φ− ψ
)

+ S(ψ)
]

fφ
}

dψ

= −m

∫ +∞

−∞

ψm−1

{

[

Ωm
(

φ− ψ
)

+ S(ψ)
]

N
∑

i=1

ρwiδ
(

ψ − φ
)

}

dψ

= m

N
∑

i=1

ρwiφ
m−1

i

{

Ωm
(

φ− φi
)

+ S(φi)
}

. (2.10)

Using Eqs 2.9 and 2.10 we can obtain the source terms ai and bi by solving a set of non-
linear algberaic equations. In this work, N is set to two for all simulations. To further
simplify the equations, we can arbitrarily set ai to zero (Fox 2003). We then use m = 1, 2
to obtain the other source terms. Using the above moment equations, the non-linear
system for bi reduces to:

[

1 1
φ1 φ2

] [

b1
b2

]

=

[

R1
2 (w1c1 + w2c2) +R2

]

. (2.11)
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From the above set of equations, the source terms are determined to be:

a1 = a2 = 0, (2.12)

b1 =
1

φ1 − φ2

2
∑

i=1

wiΓt(∇φi)
2 +Ωm (w1G2 − w2G1) + w1S(φ1), (2.13)

and

b2 =
−1

φ1 − φ2

2
∑

i=1

wiΓt(∇φi)
2 − Ωm (w1G2 − w2G1) + w2S(φ2). (2.14)

As discussed earlier, the number of environments can be considered to be equivalent to
the particle number density used in a Lagrangian simulation. This implies that as the
number of environments is increased, the accuracy of the scheme should increase (Wang
& Fox 2003). The single scalar DQMOM can be extended to a multi-variate case using
similar derivation technique (Fox 2003). In determining the source terms, one of the
important criteria is that the pre-multiplier of the b vector in Eq. 2.11 is invertible. It
should also be noted that ai need not be set to zero and can be determined through a
set of extended non-linear equations (Marchisio & Fox 2003).

3. Numerics

The numerical implementation for reactive flow simulations consists of two parts -
the flow solver and the scalar handler. Here, we use a LES flow solver along with three
different implementations of the scalar transport equation. The first method solves for
the mean mixture fraction and reaction progress variable along with the variance of
the mixture fraction using Eulerian transport equations for these quantities. The second
method uses a Lagrangian Monte-Carlo scheme to solve the FDF of the mixture-fraction
and reaction progress variable. The third implementation uses the DQMOM based 2-
environment model to obtain the first and second moments of the scalars. In all these
cases, the density field is obtained from the scalar handler and fed to the flow solver which
corrects the flow according to reaction. To first establish the viability of the DQMOM
model, we only consider reactions with no heat release in constant density incompressible
flows and thus do not use the feedback loop. The flow solver provides the one-way transfer
of velocity and turbulence fields to the scalar handler. The following subsections briefly
explain the numerical implementations of each of the components.

3.1. LES solver

The second order LES scheme uses an energy conserving formulation for the momentum
equations (Pierce 2001). The eddy viscosity and diffusivity are computed using dynamic
Smagorinsky model (Moin et al. 1991). The LES scheme also solves for the scalar trans-
port equation using a semi-implicit scheme. In the current work, scalar equations are
solved for the mixture fraction Z and the reaction progress variable Y. The numerical
implementation uses an upwind based QUICK scheme that is designed to reduce numer-
ical oscillations but also leads to some amount of numerical dissipation.
For the sake of comparison, the mixture fraction variance transport equation is also

simulated using production and dissipation terms consistent with the FDF formulation.
Since sub-grid variance is a very small quantity in LES simulations, numerical dissipation
can further increase the errors in the computation. To overcome this problem, a Z − Z2

system is solved rather than the variance transport equation. The scalar equations are
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obtained by integrating the FDF equation over mixture fraction space after multiplying
by Z and Z2.

∂ρZ

∂t
+∇ρUZ = ∇ (Γ + ΓT )∇Z (3.1)

∂ρZ2

∂t
+∇ρUZ2 = ∇ (Γ + ΓT )∇Z2 − Ωm

(

Z2 − ZZ
)

, (3.2)

with Ωm defined as before providing the time scale for scalar dissipation. This formulation
ensures that in the limit of zero dissipation, the sub-grid variance is identical to the
analytical solution:

Z ′2 = Z2 − Z = Z
(

1− Z
)

. (3.3)

The inlet and boundary conditions for Z2 are identical to the filtered mixture frac-
tion equation. This ensures that the sub-grid variance is zero at both the inlet and any
boundaries in the domain. The chemical source term for the progress-variable equation
is modeled based on the filtered means of the scalars and neglecting any sub-grid fluc-
tuations. This “laminar” assumption leads to the following transport equation for the
reactive scalar:

∂ρY

∂t
+∇ρUY = ∇ (Γ + ΓT )∇Y + ρS(Y ). (3.4)

The LES solution of the mixture fraction mean and variance equation provides an inde-
pendent way of checking the transported PDF and DQMOM methods.

3.2. Transported PDF solver

In the Lagrangian implementation, the FDF transport equation is solved using an en-
semble of notional particles. The hybrid composition-PDF scheme used here uses the
flow fields from the LES solver (that was described in the previous section) to evolve
stochastic particles that are evenly distributed in the entire computational domain. The
evolution equations for the particles are obtained from Eq. 2.3 by using techniques sim-
ilar to the RANS based hybrid method (Pope 1985; Colucci et al. 1998). The SDE’s are
solved for a system of particles which represents the FDF in composition space. The
particles move in physical space according to:

dx∗ =

(

u+
1

ρ
∇(Γ + Γt)

)

dt+

√

2
(Γ + ΓT )

ρ
dW, (3.5)

where x∗ is the instantaneous position of the particle and dW represents the Wiener
diffusion term. The motion in composition space is due to mixing and reaction.

dφ∗ =
[

Ωm
(

φ− φ∗
)

+ S(φ)
]

dt, (3.6)

where φ∗ is the notional particle composition. Here the composition vector φ = [Z, Y ]
evolves using reaction source terms S(φ) = [0, S(Z, Y )]. The use of the IEM model with
the appropriate dissipation rate ensures that the variance dissipation is consistent with
the LES solver. Since typical LES simulation use millions of computational cells, even a
particle number density of 10-20 particles per cell will be computationally expensive. To
ensure tractability, several novel computational algorithms are implemented. A pointer-
based storage structure is used for handling the particles. Conventional algorithms use
sorting procedures to keep the particles in order but are not feasible for such large
numbers. Here an integer numbering procedure is used that uses pointer based linking of
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particles to cells. Cells store only the index of the particles in their domain. Ownership
of particles is transferred to the destination cell when particles move across faces. Such
integer operations are inexpensive, even though they tend to loose some efficiency with
iterations as the particles occupy discontinuous locations in memory. Particle motion is
handled using an element-to-element tracking procedure (Subramaniam & Haworth 2000;
Raman et al. 2003a). This algorithm splits the motion into a sequence of sub-steps that
move individual particles from face-to-face with intermediate re-interpolation of particle
velocity. Reflective boundaries can then be handled directly. In all the simulations carried
out here, a nominal number density of 30 particles per cell is used. Particle splitting and
merging is utilized to minimize the fluctuations in the number density. The details of the
implementation and some preliminary results can be found in Raman et al. (2003b).

3.3. DQMOM implementation

The two-environment version of the model solves for the scalars w1 (w2 = 1− w1), G11,
G12, G21, G22. The working set of equations can be written as

∂ρw1
∂t

+∇ρuw1 = ∇ (Γ + ΓT )∇w1. (3.7)

∂ρGαi

∂t
+∇ρuGαi = ∇ (Γ + ΓT )∇Gαi + Sαi. (3.8)

It can be seen that the evolution equation for the environment (Eq. 3.7) is identical
to the mixture-fraction equation with no source term. The weighted scalar equations
(Eq. 3.8) contain source terms that can be decomposed into mixing, reaction and correc-
tion components. These terms can be specified by first determining the location of the
delta-functions in composition space in a given computational cell.

φαi =
Gαi

wi
. (3.9)

The mixing source term takes the form:

Smα1 = −S
m
α1 = Ωm

(

wα1Gα2 − wα2Gα1

)

. (3.10)

The correction term is obtained using the location of the delta peaks as

Scα1 = −S
c
α2 =

1

φα1 − φα2

2
∑

i=1

(ΓT + Γ) (∇φαi)
2. (3.11)

The reaction source term is computed based on the composition vector φi in each envi-
ronment as

Srαi = Sα
(

φi
)

. (3.12)

The source term for the scalar equation Gαi is then given by

Sαi = Smαi + S
c
αi + wiS

r
αi, (3.13)

where the reaction source term is multiplied by the weight in order to be consistent with
the formulation.
The main implementation issue comes for the correction term. The correction term,

Scα1, compensates for the excess moment source term arising from the finite-peak repre-
sentation of the FDF. As seen above, this source term involves the inverse of the separa-
tion distance of the delta-peaks composition space. In regions of near-complete mixing,
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Figure 2. Instantaneous mixture fraction (left) and progress variable (right) contours
simulated using the FDF scheme.

this term will approach zero leading to very large correction terms. Several alternatives
have been suggested (Wang & Fox 2003) but in this work, an ad-hoc limit is used such
that for all points where the difference φα1−φα2 is less than ε, this term is set to ε. Such
an implementation using ε = 10−4 was found to be stable for all the cases studied.

Another important aspect to note is that the scalar solver does not maintain the
bounds on the scalars. This might lead to peak locations outside the accessible range for
the scalars. It was found that any attempt to limit these values led to a sharp decrease in
the estimate of the variance. To counter this problem, for all grid cells that contain peaks
outside the natural limits, the source terms were set to zero. The presence of reaction
source terms with stiff kinetics was found to adversely affect this occurrence. Smaller
time-steps that are determined based on reaction-time scale were found to alleviate this
problem.

4. Simulations

The shear flow geometry of Mungal & Dimotakis (1984) is used to test the new scheme.
The configuration consists of a planar shear layer formed by two streams entering at
8.8 m/s and 22 m/s velocity. Though the experiment involves a low heat-release fast
chemistry, in this work we have not implemented this mechanism. Since the purpose is to
compare different reaction models, a simple first order mechanism of the type A+B → P
is used for modeling reaction. The rate expression is simplified using a mixture fraction-
progress variable approach. Three different rate expressions that commonly occur in
reacting flows are tested. The transported PDF scheme is also simulated for the same
flow conditions and the results are compared with the DQMOM and LES simulations.
A 256 × 128 grid spanning 80D in the axial direction and 40D in the cross-stream
direction is used. Here D is set such that the observation point in the experiment is
around 50D. The inlet velocity profiles are assumed to be laminar with flat profiles. A
development region corresponding to 10D extends into the domain where the two streams
are separated by a splitter plate.
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In all the simulations, the rate expression for the progress variable is of the form

rY = K

(

Z

Zst
− Y

)(

1− Z

1− Zst
− Y

)

. (4.1)

The rate constant K is varied to study the effect of non-linearity on DQMOM predic-
tions. In the first case, the rate constant is set to a value of K = 2. Figure 2 shows
the instantaneous mixture fraction and progress variable contours near the center of the
domain. It shows the vortex like structure common to shear flows and the presence of
highly mixed reactants at the center of such vortices. The peak in source term and mean
progress variable are observed near the centerline. The vortices were found to stretch
to a maximum of 10D in the cross-stream direction. It was found that the DQMOM
model exhibits similar high reaction-rate zones. However, the LES simulations show a
thick reaction zone with maximum allowable reaction rate at each location. In order to
compare the steady-state trends, mean and variance of all scalars were time-averaged
for at least one flow through time. Figure 3 shows the cross-stream profiles of the mix-
ture fraction and sub-grid variance computed from all three schemes. Theoretically, the
sub-grid variance obtained from all these methods should be identical. However, the dif-
ferences in the implementation cause some discrepancy. Nevertheless, the time-averaged
filtered mixture fraction and sub-grid variance predicted by all the schemes are in good
agreement, thereby validating both the DQMOM and transported-PDF implementation.

The time-averaged mean and sub-grid variance of the reaction progress-variable ob-
tained from the different schemes show some interesting features (Fig. 4). The sub-grid
variance is non-zero only for the DQMOM and transported-PDF schemes and is set to
zero for the LES scheme. In this context the LES solver can be considered as a one-
environment model with complete sub-filter mixing. If the transported-PDF scheme is
considered as a multi-environment DQMOM model, the particle scheme with a nominal
number density of N represents an N-environment decomposition of the FDF. The cross
stream profiles of the mean show that the DQMOM method provides a vast improvement
over the one-environment solution. The mean profile shows that in spite of the simple
rate expression, second moment terms cannot be neglected. The differences between the
LES and DQMOM models are highest in the initial section where the effect of unmixed
reactants will be very important. Since the inflow is laminar, the mixing layer itself does
not become turbulent until about X = 7.5. However, the LES solver predicts very high
reaction rates in even these laminar regions where low mixing should essentially keep
the reaction rates to a very low value. This “early-ignition” is observed in the profiles at
X = 20 where the mean value predicted by the LES solver is atleast 50% higher than
that predicted by the DQMOM model. Surprisingly, the sub-grid variance profile from
the DQMOM scheme also shows very good agreement with the PDF scheme. This essen-
tially implies that the third and higher moments of the reactive scalar can be neglected
for this chemistry scheme.
In the next case, a more complex rate expression is implemented. Reaction rates ap-

pearing in combustion have a strong dependence on temperature. Most source terms
have an exponential dependence on local temperature. To simulate such a condition, the
reaction rate constant was set to

K = 1000exp

(

−
b(1− Y )

1− 0.88(1− Y )

)

, (4.2)

where b denotes the degree of dependence on temperature. For practical combustion
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Figure 3. Comparison of time-averaged mean and variance of mixture fraction using a
constant at different axial locations. ( ) DQMOM, ( ) LES and ( ) PDF.

applications, b is usually set to values between 5 and 6. However, such high values lead
to extinction for the present flow configuration. Instead, a lower value of 1 is chosen so
that the reaction zone can be anchored near the splitter plate. This implies a weaker
dependence on temperature but nevertheless makes the rate expression non-linear. Fig. 5
shows the cross-stream profiles of reaction progress variable. Here again, it can be seen
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Figure 4. Comparison of time-averaged (left) mean and (right) variance of reaction progress
variable using a constant rate constant at (top) X=20, (middle) X=30 and (bottom) X=50.
( ) DQMOM, ( ) LES and ( ) PDF.

that the DQMOM predictions of both the mean and the variance of the reactive scalar
are in good agreement with the transported-PDF results. The LES predictions show fast
rates consistent with the laminar assumption. It should be noted that depending on the
reaction rates, the complete mixing assumption can also lead to quenching.
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The third and final case uses a polynomial rate function which is common to chemical
engineering assumptions. Reduced chemical mechanisms like the chloromethane reactions
(West et al. 1999) may even involve non-integer moments of the scalar variable. Here,
the rate is defined as

rY = 1000
0.0001 + Y 2

1.0 + Y
. (4.3)

This expression ensures that the reaction proceeds without the need for an ignition source.
The predicted mean and variance (Fig. 6) indicate good agreement with the transported-
PDF scheme. This clearly shows that the DQMOM model with just two environments
is able to drastically improve the single-environment predictions obtained from the LES
solver.
In terms of computational requirements, the particle based transported-PDF solver

was nearly 5 times slower than the DQMOM scheme even for such simple geometries.
For complex configurations, the memory requirements of a large ensemble of particles
can further slow down the simulation. However, the DQMOM scheme it not without
limitations. In particular, the time-scale limitations of a stiff-chemistry source term can
reduce the time-step used in the DQMOM model while the robust chemistry solvers
(e.g ISAT (Pope 1997)) can increase the computational speed of the transported-PDF
model. In addition, detailed chemistry mechanisms will require a large number of scalar
transport equations and may eventually diminish the advantages over the particle scheme.
In spite of these observations, present study shows that the DQMOM scheme is a viable
altrernative to the Monte-Carlo based transported-PDF model and needs to be further
explored for multi-species systems.

5. Conclusions and Future Work

A sub-filter model for reactive flows, namely the DQMOM model, was formulated for
LES using the filtered mass density function. Transport equations required to determine
the location and size of the delta-peaks were then formulated for a 2-peak decomposition
of the FDF. The DQMOM scheme was implemented in an existing structured-grid LES
solver. Simulations of scalar shear layer using an experimental configuration showed that
the first and second moments of both reactive and inert scalars are in good agreement
with a conventional Lagrangian scheme that evolves the same FDF. Comparisons with
LES simulations performed using laminar chemistry assumption for the reactive scalar
show that the new method provides vast improvements at minimal computational cost.
Currently, the DQMOM model is being implemented for use with the progress vari-

able/mixture fraction model of Pierce (2001). Comparisons with experimental results and
LES simulations using a single-environment for the progress-variable are planned. Future
studies will aim at understanding the effect of increase in environments on predictions.
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